POLYURETHANE FLEXIBLE PLUG EXPANSION JOINTS –
ADVANTAGES COMPARED WITH BITUMINOUS TYPE

Robert Bradley, Gianni Moor and Gustav Gallai

Biography: Robert Bradley, born in 1983, received his bachelor’s degree in civil engineering from Villanova University in Pennsylvania, USA. Currently, he is a project manager with mageba USA.

Gianni Moor, born in 1968, received his civil engineering degree from the Swiss Institute of Technology in Zurich, Switzerland (ETHZ), and was later awarded an MBA degree by the Business School IESE (Barcelona, Spain). Today, he is Deputy General Manager and COO of Mageba Group, and CEO of Mageba USA.

Gustav Gallai, born 1952, received his degree in mechanical engineering from HTBLA Linz, Austria. He was an acting partner at Reisner & Wolff Group from 1984 until 2013, and is currently a senior consulting engineer at Mageba Group. He is also an Austrian delegate to EOTA working and task groups dedicated to the development of the ETAG 032 specification Expansion Joints for Road Bridges, and a member of the German and Austrian standardization committees for bearings and expansion joints.

ABSTRACT

A new, much improved type of flexible plug expansion joint has been developed, with a polyurethane surface, which offers a number of substantial advantages over the traditional bituminous type. The Polyflex® Advanced expansion joint offers all the benefits of the asphaltic plug joint – including smooth, safe, low-noise surface, great adaptability and easy installation. However, it overcomes the numerous disadvantages and challenges that have always plagued asphaltic plug joints. It offers enormously improved strength, elasticity and durability, resulting
in much less maintenance and far more reliable watertightness. Installation is far easier and less prone to error, with the two-component compound being mixed at ambient temperatures. For these reasons and others, this type of joint should be considered for use in bridge construction and, in particular, in bridge maintenance.

Keywords: flexible plug expansion joint, non-bituminous, installation, maintenance, replacement, durability, ETAG 032.

INTRODUCTION

Flexible plug expansion joints, which create a completely closed, absolutely flat driving surface right across a structure’s movement gap, offer a number of benefits over other small-movement expansion joint types. The continuous, flexible surface results in unsurpassed driver comfort and extremely low noise under traffic, while also eliminating discomfort and safety risks for pedestrians and cyclists. Furthermore, the way the joints are constructed, by pouring freshly mixed material in situ, facilitates transport and handling and makes expansion joints installable in sections, lane by lane, with any desired shape or longitudinal profile (e.g. with intersections or upturns).

However, flexible plug expansion joints made from traditional bituminous materials have long been plagued with durability problems, not performing as well, long term, as joints manufactured primarily from steel. Continuous dynamic loading and braking/acceleration forces from vehicle wheels, year after year, cause stresses in the material, resulting in cracking, loss of watertightness and general deterioration – impacts that would only be exacerbated by improper preparation on site and incorrect temperature during installation (typically approx. 180 °C / 350 °F required).
To overcome these shortcomings while retaining the aforementioned benefits, the design of the flexible plug expansion joint has been optimized, utilizing superior (non-bituminous) materials and incorporating improved support and connection details. The result – the Polyflex® Advanced expansion joint – is described below.

HISTORY AND BACKGROUND

Traditional bitumen-based flexible plug expansion joint materials suffer from several disadvantages. At low temperatures, for instance, the material used is generally very stiff, causing de-bonding and resulting in leaking due to cracks, while at high temperatures, the material becomes weak and tends to deform plastically resulting in rutting and migrating out of the blockouts, particularly when subjected to traction loads. Inconsistent quality due to improper mixing and incorrect temperature during installation (high temperatures required) also frequently cause problems. As a result of such disadvantages, asphaltic plug joints are subject to various limitations. For example, they should generally not be installed in highways and locations with frequent acceleration and braking, such as in the vicinity of bus stops, traffic lights etc., and they should not be used in railway bridges under stone ballast. And in general, the functionality and durability of asphaltic plug joints has often been found from experience to be unreliable.

In Switzerland, investigations carried out in cooperation with EMPA (the Swiss Federal Laboratories for Materials Science and Technology) showed that the bitumen quality being used for such joints varied considerably, with substantial effects on joint functionality and durability. Small changes in the chemical composition of the raw materials led to big reductions in expansion joint quality. As a result, construction project clients and expansion joint manufacturers became increasingly concerned about the ongoing suitability of the systems for use. A demand developed for a flexible plug system using plug material that could be produced
by the expansion joint supplier, or that could at least be acquired from a materials supplier in the required quality.

DESIGN AND CHARACTERISTICS OF THE IMPROVED PU-BASED FLEXIBLE PLUG JOINT

Instead of the bituminous material traditionally used to form the driving surface of flexible plug expansion joints, the Polyflex® Advanced expansion joint uses a specially selected, solvent free, highly durable polyurethane (PU) material. The PU material originally used, which was adapted for road expansion joint requirements, had a long history of use as waterproofing for roofs, and has been constantly improved over the years. The material has shown test values of 650% elongation before breaking (compared to 350-400 % for standard rubber), which enhances durability and makes the material an ideal choice for use in expansion joint systems.

With perforated steel support elements incorporated in the design, the joint can withstand long-term traffic loading and braking and reaction forces while accommodating significant structure movements, at both very low and very high temperatures. Total movements of up to 100 mm (4 inches) have been accommodated in several countries on various projects in successful operation since 2007. Figure 1 shows an overview of all material components of the joint.

In addition to its exceptional elasticity, the special PU material used offers enormous tear resistance, with a tear strength of 20 N/mm². It typically has a tensile strength of 14 N/mm², a density 1.05 g/cm³ and a Shore A hardness of approximately 65. It is highly resistant to wear and environmental and chemical influences, and thus offers an exceptionally long lifespan. In fact, its service life is typically substantially longer than that of connecting roadway surface materials.
The joint is fully functional in the temperature range −50°C to 70°C (−58°F to 158°F) – a major improvement over asphaltic plug joints. Due to its good performance at low temperatures, the material can be used in very cold climates. It is also very versatile, with virtually any common joint shape possible – e.g. with upturns, skew angles and junctions (T-shaped and X-shaped junctions, etc.) as shown in figure 2.

Installation is relatively easy, not only in comparison with traditional asphaltic plug joints but also compared with expansion joints of other types. With no large, heavy parts, lifting plant is not required, and the poured material adapts to suit the dimensions of the prepared recess. The two-component PU material is mixed from complete packing units at ambient temperatures, minimizing the risk of suboptimal mixing and installation. Processing is possible at temperatures from 5 °C to 35 °C (41 °F to 95 °F), virtually independent of humidity, and the joint can be driven over after only a few hours.

In the context of bridge maintenance, in particular – when the joint is installed to replace an existing one – the benefits of the joint’s use are even more pronounced. The joint can typically be laid within the depth of a bridge’s asphalt surfacing, avoiding the need to break out any concrete etc. With only minimal amounts of an existing structure to be removed, and quick installation and short material curing times, the new joint can be installed quickly, economically and reliably. The speed of installation (e.g. with a joint replaced during a night shift), with new joints being trafficable within just a few hours, minimizes impacts on traffic.

If required, impacts on traffic can be further reduced by installing the new joint lane by lane – an approach that is fully supported by the joint’s design. In phased installation, the already cured PU material of a previous stage is chemically reactivated by the fresh material, creating a high-strength bond. The same chemical reactivation of previously cured PU material also enables minor damage to an existing polyurethane joint to be easily repaired, simply by pouring fresh material onto the damaged area.
Summary of advantages and benefits

- Exceptional long working life, longer than adjacent surfaces
- Highest possible driver comfort
- No noise from crossing traffic due to surface that is flush with adjacent road
- Watertight
- Maintenance-free (no cleaning required)
- Quickly installed lane-by-lane with minimal traffic impacts, drivable after a few hours
- Installation within a wide temperature range (5°C to 35°C / 41°F to 95°F)
- Wear-resistant, no mechanical wear parts
- No rutting, high resistance to abrasion (e.g. from braking traffic)
- Damage to the joint can be easily repaired by reactivation of the PU material
- No recess for anchorage in structural concrete necessary
- Surfacing (asphalt or concrete) can be applied continuously before joint installation
- Any horizontal bend in the joint possible
- Any curb / sidewalk detail possible
- Low reaction forces
- Cold processing and easy handling with preset mixing ratio minimizes risk of mixing errors
- Resistant to environmental influences and acids, bases, chlorides, etc.
- Smooth surface ideal for pedestrian areas (e.g. in airports and railway stations)

INSTALLATION

The installation of a Polyflex® Advanced expansion joint to replace an existing joint is described below. The recess is prepared by removing as much of the existing structure as is necessary to
create the minimum space required to ensure an adequately strong (Fig. 3), stable structure to which the polymer concrete base material can bond and transfer forces.

The recess is then sandblasted as required to ensure proper adhesion of the expansion joint materials, and cleaned. Where applicable, deck waterproofing membrane can be extended into the recess, enabling a watertight connection to be created as shown in figure 4.

Where a suitable base must be created (in the absence of an appropriate surface following breaking out of the old joint), shuttering / formwork is then prepared to retain the fresh base material. This may simply take the form of a sheet of Styrofoam® or similar, placed in the bridge gap. A suitable primer is then used, if necessary, to ensure proper bonding and polymer concrete is poured to form the base (Fig. 5).

The recommended Robo®Flex polymer concrete (if required) cures naturally, requiring only protection from the elements and from damage. Curing time depends on ambient temperature (at 15°C, approx. one hour). The supplied steel angles are anchored to the surface of the prepared surface at each side of the movement gap, and the supplied coverplate is placed across the gap, centred above it, as shown in the following figure 6.

When all is prepared and confirmed, with the recess free of debris etc., the PU material can be poured and precisely levelled to the final level of the connecting surfacing (Fig. 7).

TESTING IN CONNECTION WITH AWARDING OF EUROPEAN TECHNICAL APPROVAL (ETA)

In connection with the awarding of a European Technical Approval, with validity across the European Union, extensive testing and certification was carried out by the Bundesanstalt für Materialforschung und –prüfung (BAM), Berlin, by the Prüfamt für Verkehrswegebau of the Technical University of Munich (TUM), and by the MAPAG testing institute, Austria.
Testing of bond strength of the PU material

The tests included verifications of bond strength on various surfaces such as concrete, polymer concrete, steel and asphalt. The recorded values were very high, even at low temperatures, demonstrating excellent resistance to de-bonding and thus also excellent resistance to leaking.

Assessment of ageing and temperature characteristics of the PU material

The ageing and temperature characteristics of the PU joint filling mixture were evaluated at the BAM institute in Berlin, after ageing for 3030 hours. The evaluation, based on ISO 4664, was carried out over a temperature range from -60°C to +250°C. Both the complex modulus $|G^*|$ and the loss factor $\tan \delta$ demonstrate very good performance for the declared temperature range of -40°C to +60°C (Fig. 8).

Mechanical resistance testing

At the TUM institute in Munich, a full-scale assembled joint specimen, in the maximum opening position, was subjected to a test load of 150 kN via a pneumatic tyre (Fig. 9). The contact pressure was 0.94 MPa, the temperature was 23°C and the specimen length was approximately 1 m. The test was carried out in accordance with the Austrian standard RVS and the appropriate European Technical Approval Guideline (draft ETAG 032, Part 3, Annex 3M Method a), and recorded deformation after loading and any subsequent recovery curve. In the test, deformations of max. 0.5 mm were recorded immediately after unloading, and within one hour of unloading, a complete elastic recovery of the surface had occurred. No damages or other changes to the surface were detected.

Fatigue resistance testing

A second full-scale joint specimen was then subjected to further testing in the same testing rig at TUM, Munich. The test involved repeated rolling over by a pneumatic wheel, at an elevated temperature of 45°C, in accordance with draft ETAG 032, Part 3, Annex 3M Method b. The contact pressure of the pneumatic tyre was 1.0 MPa, and the number of overpasses was 3030,
with 30 of these executed with an additional 10% of horizontal load to simulate braking forces. After the test, no de-bonding or cracking was observed, and the test was passed.

On the basis of experience in Europe with the same testing procedure for asphaltic plug joints and various national regulations, this successful high-temperature testing would support a 15-year service life categorization.

In addition, a standardized rutting test was carried out, at 60°C, in accordance with EN 12697-22. The following figure 10 show the enormous difference in performance between traditional asphaltic plug joint material and the Polyflex®Advanced material.

Movement capacity testing

To evaluate the movement capacity of the full-scale joint specimen, a test was performed at the BAM institute in Berlin, in accordance with draft ETAG 032, Part 3, Annex 3N. The complete declared movement range, from maximum elongation to maximum compression, was tested, with temperature varying synchronously to the relevant deformation state between -40°C and +60°C. During the test, reaction forces and deformations were recorded.

The specimen was also subjected to 7,500,000 sinusoidal cycles, with an amplitude of 1 mm, at ambient temperature and a frequency of 5 Hz. In addition, dynamic properties were voluntarily tested at -40°C. The dynamic behavior of the material was shown to be excellent, with the specimen showing no irregularities or signs of fatigue after the testing.

These tests was performed at the BAM for a typical joint type for 50 mm total movement for the complete temperature range one sample, which was taken then as a calibration sample for the in-house tests of the complete series done at our works for all other types of the Polyflex®Advanced series. All tests were witnessed and by the officially certified engineer of the European Approval body.
Watertightness testing

After successfully passing the aforementioned movement testing, the full-scale specimen was subjected to a watertightness test at the BAM institute in Berlin. At the maximum opening position of the joint, water was applied to a level of 30 mm above the highest point of the joint and maintained at that level for six hours. After the test, no signs of leakage or moisture could be found under the specimen.

Measurement of level differences in the surface

The flatness of the full-scale specimen was checked prior to the above-mentioned tests, to verify that any deviations in the level of the driving surface from the ideal connection line between the two adjacent pavements (without any imposed horizontal deformations and in the unloaded condition) are not greater than 5 mm – in accordance with the Austrian standard RVS and the relevant ETAG.

After loading, greater deviations are permitted, but these must not exceed 10 mm.

Verification checks were carried out during and after both the fatigue and movement tests as described above. The results were positive, under imposed horizontal movements with a maximum level increase of +6 mm and a maximum level decrease of -5 mm being recorded.

During these tests wheel loads were not applied because the effect of deformation under this action was verified by the separate as described under mechanical resistance (Fig. 11).

Skid resistance testing

The full-scale specimen was subjected to skid resistance testing with a portable skid resistance pendulum tester as described in EN 13036-4, using the CEN rubber slider for carriageways and the 4S rubber slider for footpath areas.

Further testing

Testing was carried out on the joint’s components to establish durability characteristics as follows:
• Resistance to chemicals, such as oil, fuel and de-icing agents, according to EN ISO 175
• Temperature-based ageing: Various tests according to EN 13687-2, EN 13687-3, EN 13687-5
• Ageing resulting from UV-radiation and weathering: Long-term tests (3030 hours) to TR010
• Ageing resulting from ozone: Test according to ISO 1431
• Freeze-thaw test (with thaw salt) according to EN 13687 Part 1

Resulting European Technical Approval

As a result of this testing, the expansion joint has been awarded a European Technical Approval (ETA). This ETA covers joints of this type that accommodate longitudinal movements (SLS) of up to 135 mm (90 mm expansion and 45 mm compression), with a thickness of 60 mm and an initial width of 1100 mm. All types are designed for a vertical displacement of +/- 10 mm, permitting bridge bearing replacement work to be carried out without damaging the joint.

Further national approvals have also been awarded. For example, an approval issued by NEXCO (the West Japan Highway Administration) on the basis of specially completed testing have validity right across Japan.

Independent evaluation by engineering firm on behalf of a client

In 2015, in the early stages of a large project in Switzerland (the Postparc development project in Berne’s city center), a number of Polyflex® Advanced expansion joints were initially installed in order to provide an opportunity for the client to evaluate their performance under the site’s real service conditions. An independent engineering consultant investigated and assessed the performance of the joints, in particular with respect to watertightness, movements, rutting, penetration of point loads and adhesion to subsurface.

Images from some of the tests carried out are shown in figure 12.

The engineers’ report concludes with the following recommendation:
The engineering partnership recommends the use of Polyflex® Advanced for the expansion joints, for the following reasons:

- The system has been widely used, especially in Austria, and can present the most references to date.
- No problems were experienced during the installation of the test strips.
- The most important requirements were satisfied by the test strips (watertightness, bonding to different materials, movement capability).
- The system is practically the only one which can be recommended today, even if a certain degree of maintenance can be expected during its service life. Expansion joints are mechanical parts that are subjected to heavy wear and tear. The systems of other suppliers may well offer the same properties in the near future, but are not yet ready to be recommended for such a large application.

ADDITIONAL TESTING FOR USE IN COLD CLIMATES

Since the use of studded tires in winter driving conditions is still common in some areas, testing was carried out, at the VTI-Linköping testing institute in Sweden, to verify resistance to such demands. The test was performed in June 2015 according to EN 12697-16A, and demonstrated excellent resistance, with an abrasion value of $\text{Abr}_A = 0.1$ to 0.2 ml. By comparison, traditional asphaltic surfacing with a value of less than 20 ml would be classified as “very good”.

FURTHER TESTING IN JAPAN

For the use of Polyflex® Advanced expansion joints on Japanese highways and national roads, a complete verification according to Japanese regulations was necessary. The main focuses of the testing at the official Japanese testing institute at Fuji (Fig. 13) were verifications of...
resistance to rutting, abrasion, skid resistance and the ability to accommodate both slow and fast movements. The complete testing program was successfully completed in spring 2015.

TYPICAL APPLICATIONS

In general, *Polyflex® Advanced* expansion joints may be used for almost any small-movement application (new-build or refurbishment), but the following cases are worthy of special mention:

- Railway bridges as well as road bridges
- Architectural applications
- Pedestrian areas, cycle lanes
- Areas where cleanliness is very important, e.g. pharmaceutical and food processing industries, hospitals and laboratories
- Areas where resistance to acids and bases is required, e.g. chemical industry
- Replacement of existing expansion joints

REFERENCE PROJECT: HENRY HUDSON PARKWAY, NEW YORK – 95TH STREET OFF-RAMP

A project was implemented for New York City Department of Transportation (NYCDOT) at the end of 2014, with the replacement of an old small-movement expansion joint at the 95th Street off-ramp (southbound) of the Henry Hudson Parkway in Manhattan’s Upper West Side. The joint was installed in two phases: One lane in November 2014 and the second a month later.

The same program was followed for both lanes. On the first day, the traffic lane was closed in the morning and the old joint was removed (Fig. 14), and then the surfaces were sandblasted and the steel angles and anchors were installed. The next day, the *Polyflex® Advanced*
material was poured and levelled, and the lane was opened to traffic in the afternoon.

Considering the cold temperatures due to the time of year and the resulting longer curing time required, steel plates were placed across the joint to protect the still-curing material during the first hours of service. Subsequent inspections have shown that the joint has performed well under traffic, with no signs of wear and tear or ageing (Fig. 15).

APPLICATIONS IN OTHER COUNTRIES

This PU-based flexible plug expansion joint continues to gain widespread acceptance around the world, with well over 5,000 meters installed to date in over a dozen countries – both on new bridges and on bridge refurbishment projects. Some examples are given in figures 16, 17 and 18.

CONCLUSIONS

The Polyflex® Advanced expansion joint offers all the benefits of the traditional asphaltic plug expansion joint – including smooth, safe, low-noise surface, great adaptability and easy installation. However, it overcomes the numerous disadvantages and challenges that have always plagued asphaltic plug joints. It offers enormously improved strength, elasticity and durability, resulting in much less maintenance and far more reliable watertightness. It also offers greater movement capacity, and uniform material behavior over the temperature range -50°C to + 70°C. Installation is far easier and less prone to error, with the two-component compound being mixed at ambient temperatures. And damage to previously placed material can be easily and reliably repaired by pouring of new PU material onto the old, damaged material, chemically reactivating it. The speed of installation and curing of the material is particularly beneficial when the joint is installed on an existing structure to replace an old expansion joint, as the amount of demolition required is minimal and the construction and
material curing time is so short, minimizing disruption to traffic. For these reasons and more, this modern plug-type expansion joint is likely to be increasingly used in years to come, in both bridge construction and bridge maintenance.

Fig. 2 - Intersections such as T-shape or X-shape possible (left) and upstands can be easily created (right)
Fig. 3 - Cutting of surfacing across the joint (left) and removal of old joint/surfacing as required (right)

Fig. 4 - Arrangement of ends of waterproofing membrane in recess

Fig. 5 - Application of primer to substructure (left) and forming polymer concrete base (right)
Fig. 6 - Fixing steel angles to polymer concrete base (both) and plate across gap (right)

Fig. 7 - Placing of PU material (left) and precise levelling of material to road surface (right)
Fig. 8 - Assessment of temperature characteristics of the PU joint filling mixture at the BAM institute, Berlin

Fig. 9 - Mechanical resistance testing at the TUM institute, Munich
Fig. 10 - Comparison of common asphaltic plug joint material and Polyflex®Advanced flexible plug joint material after rutting test acc. to EN 12697-22 at 60°C (Left: Common asphalt plug material after 100 cycles at 60°C. Right: Polyflex®Advanced after 30,000 cycles at 60°C)

Fig. 11 - Measurement of deviation from ideal connection line across joint in maximum opened and maximum closed position, at the BAM institute, Berlin
Fig. 12 - Test of penetration point load (long central bar). On right, deformation has fully reversed.

Fig. 13 - Testing at the official Japanese testing institute, Fuji
Fig. 14 – Existing expansion joint after removal of one particularly deteriorated section.

Fig. 15 - Polyflex®Advanced joint seamlessly “disappearing” in the road surface
Fig. 16 - Pokoju Bridge, Wroclav, Poland

Fig. 17 - Shimomura Bridge near Kyoto, Japan

Fig. 18 - Neckarsulm Bridge, Germany